Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.Submillimeter galaxies (SMGs) constitute a key population of bright star-forming galaxies at high-redshift. These galaxies challenge galaxy formation models, particularly regarding the reproduction of their observed number counts and redshift distributions. Furthermore, although SMGs contribute significantly to the cosmic star formation rate density (SFRD), their precise role remains uncertain. Upcoming surveys, such as the Ultra Deep Survey with the TolTEC camera, are expected to offer valuable insights into SMG properties and their broader impact in the Universe. Aims.Robust modeling of SMGs in a cosmological representative volume is necessary to investigate their nature in preparation for next-generation submillimeter surveys. Here, we test different parametric models for SMGs in large-volume hydrodynamical simulations, assess their contribution to the SFRD, and build expectations for future submillimeter surveys. Methods.We implement and test parametric relations derived from radiative transfer calculations across three cosmological simulation suites: EAGLE, IllustrisTNG, and FLAMINGO. We place particular emphasis on the FLAMINGO simulations due to their large volume and robust statistical sampling of SMGs. Based on the model that best reproduces observational number counts, we forecast submillimeter fluxes within the simulations, analyze the properties of SMGs, and evaluate their evolution over cosmic time. Results.Our results show that the FLAMINGO simulation reproduces the observed redshift distribution and source number counts of SMGs without requiring a top-heavy initial mass function. On the other hand, the EAGLE and IllustrisTNG simulations show a deficit of bright SMGs. We find that SMGs with S850 > 1 mJy contribute up to ∼27% of the cosmic SFRD atz ∼ 2.6 in the FLAMINGO simulation, which is consistent with recent observations. Flux density functions reveal a rise in SMG abundance fromz = 6 toz = 2.5 that is followed by a sharp decline in the number of brighter SMGs fromz = 2.5 toz = 0. Leveraging the SMG population in FLAMINGO, we forecast that the TolTEC UDS will detect ∼80 000 sources over 0.8 deg2at 1.1 mm (at the 4σdetection limit), capturing about 50% of the cosmic SFRD atz ∼ 2.5.more » « lessFree, publicly-accessible full text available June 1, 2026
-
ABSTRACT We use the improved IllustrisTNG300 magnetohydrodynamical cosmological simulation to revisit the effect that secondary halo bias has on the clustering of the central galaxy population. With a side length of 205 h−1 Mpc and significant improvements on the subgrid model with respect to previous Illustris simulations, IllustrisTNG300 allows us to explore the dependencies of galaxy clustering over a large cosmological volume and halo mass range. We show at high statistical significance that the halo assembly bias signal (i.e. the secondary dependence of halo bias on halo formation redshift) manifests itself on the clustering of the galaxy population when this is split by stellar mass, colour, specific star formation rate, and surface density. A significant signal is also found for galaxy size: at fixed halo mass, larger galaxies are more tightly clustered than smaller galaxies. This effect, in contrast to the rest of the dependencies, seems to be uncorrelated with halo formation time, with some small correlation only detected for halo spin. We also explore the transmission of the spin bias signal, i.e. the secondary dependence of halo bias on halo spin. Although galaxy spin retains little information about the total halo spin, the correlation is enough to produce a significant galaxy spin bias signal. We discuss possible ways to probe this effect with observations.more » « less
An official website of the United States government
